
NASA-TM-lI|_79 ?/ . / ,.

Toward A Learning Apprentice
for Software Re-engineering

MICHAEL R. LOWRY

KESTREL INSTITUTE

3260 HILLVIEW AVENUE

PALO ALTO, CA 94304

SMADAR KEDAR

STERLING FEDERAL SYSTEMS

AI RESEARCH BRANCH, MAIL STOP 244-17

NASA AMES RESEARCH CENTER

MOFFETT FIEI, D, CA 94035

NASA Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-91-14

May 1991

Toward A Learning Apprentice

for Software Re-engineering

Michael R. Lowry

Kestrel Institute

3260 Hillview Ave.

Palo Alto CA 94304

lowry@kestrel.edu

Smadar T. Kedar

Sterling Federal Systems

NASA Ames Research Center

Moffett Field CA 94035

kedar@ptolemy.arc.nasa.gov

Abstract

Most programmers spend their time in maintenance activities, such as port-

ing programs. Existing tools provide only limited help because of their lack

of flexibility. This paper describes research toward an interactive software re-

engineering learning apprentice that learns translation rules for porting pro-

grams between different languages and different hardware platforms. The pro-

grammer shows examples of corresponding code fragments, and the learning ap-

prentice generalizes these examples. First the learning apprentice syntactically

generalizes the correspondence, then semantically verifies the correspondence,

and then generalizes the verification proof to derive a translation rule with pre-

conditions using explanation-based generalization. When a verification does not

succeed, the learning apprentice determines sufficient conditions which can be

incorporated into the translated program.

This paper appears in The Proceedings of the Ninth National Conference on

Artificial Intelligence (AAAI-91) Workshop on Automating Software Design,

held in Anaheim, CA, July, 1991.

Toward A Learning Apprentice

for Software Re-engineering

Michael R. Lowry

Kestrel Institute

3260 Hillview Ave.

Palo Alto CA 94304

lowry_kestrel.edu

Smadar T. Kedar

Sterling Federal Systems

NASA Ames Research Center

Moffett Field CA 940:t5

kedar_ptolemy.arc.nasa.gov

Abstract

Most programmers spend their time in main-
tenance activities, such as porting programs.
Existing tools provide only limited help be-
cause of their lack of flexibility. This paper
describes research toward an interactive soft-

ware re-engineering learning apprentice that
learns translation rules for porting programs
between different languages and different hard-
ware platforms. The programmer shows exam-
ples of corresponding code fragments, and the
learning apprentice generalizes these examples.
First the learning apprentice syntactically gen-
eralizes the correspondence, then semantically
verifies the correspondence, and then general-
izes the verification proof to derive a transla-
tion rule with preconditions using explanation-
based generalization. When a verification does
not succeed, the learning apprentice determines
sufficient conditions which can be incorporated
into the translated program.

1 Introduction and Motivation

Most programmers spend their time maintaining pro-
grams, including porting existing programs to new lan-
guages and new hardware platforms. Although commer-
cial off-the-shelf translators are available, they are sel-
dom used. Such translators treat the target language as
a machine language, making the resulting code unread-
able. It is also difficult to specialize these translators
to different programming language dialects. Thus al-
though these translators sometimes satisfy the minimal
functional goals of porting - enabling code to be run on
a new platform- they do not satisfy the non-functional
goals such as maintainability which are usually the pri-
mary motivation for porting code. For example, despite
the commercial availability of Fortran to C translators,
one NASA site has contracted 40 maintenance program-
mers to manually port existing flight control software in
Fortran on IBM mainframes to C on Unix workstations.

Because re-engineering is usually motivated by non-
functional goals, we believe that an interactive re-
engineering system is preferable to a completely au-
tomatic re-engineering system. In particular, a re-

engineering system should assist a maintenance pro-
grammer who is porting a program by ensuring that
functional goals are satisfied, such as target program
correctness, while providing implementation freedom in
meeting non-functional goals. Non-functional goals are
difficult to formalize and are often best conveyed inter-
actively by example. Ideally, such an interactive system
would incorporate a knowledge acquisition capability, so
that the maintenance programmer can simply provide
examples of how code fragments should be translated,
and the system will generalize these examples into trans-
lation rules. This type of interactive aid to knowledge
acquisition and generalization is known as a learning ap-
prentice system (Mitchell, at. al., 1985) (Smith, at. al.,
1955). These learning apprentice systems can acquire
and generalize new knowledge by observing and analyz-
ing specific examples provided by a user. This paper
describes research toward such a learning apprentice for
software re-engineering. A prototype system that syn-
tactically generalizes examples of translated code frag-
ments, the Generic Translator, has already been imple-
mented. The main portion of this paper describes an ap-
proach to extending the Generic Translator to a Learning
Translator (LTran) that semantically generalizes exam-
ples of translated code fragments.

As a motivating example, consider the problem of
porting a Fortran program to a C program. There are
many syntactic and semantic differences between For-
tran and C, such as: Fortran arrays have a default lower
bound of 1 while C arrays have a default lower bound
of 0; Fortran arrays are stored in column order while C
arrays are stored in row order. The maintenance pro-
grammer needs to consider these sometimes subtle dif-
ferences while at the same time addressing performance,
maintainability, stylistic and other non-functional goals.
In one context the programmer may want to translate a
Fortran array to a C array by decrementing each index
of the Fortran array by 1. This conserves space but can
make the code more difficult to read. Also, manually
carrying out this translation for all the array operations
usually introduces errors. In another context, the pro-
grammer may want each index of the C array to corre-
spond directly to that of the Fortran array. This choice
can make the resulting code easier to read and maintain,
but also introduces a subtle difference in the behavior of

the Fortran array operations and the corresponding C

operations.In ourapproach,LTranverifiesthata par-
ticularexampleof decrementingthearrayindexis se-
manticallyvalid,andthengeneralizesthisexampleinto
translationrules.Theseruleswouldthenbeappliedau-
tomatically,eliminatingmanualerror. Forthesecond
optionof notdecrementing,LTranfindssufficientcon-
ditionsfor thetranslationto bevalid,andthenwould
interactwiththeuserto determinehowto achievethese
conditions;for example,insertinga conditionalbranch
ontheseconditionsintothetranslatedprogram.

Thispaperfirst describesthe implementedGeneric
Translator.It thendescribesthemathematicsfor ver-

ifying translations and outlines the extended approach,
the Learning Translator. The Learning Translator uses
explanation-based generalization (EBC) (Mitchell, et.
al., 1986) to verify and generalize example translations
provided by the user. The paper then shows two de-
tailed examples, the first illustrating the acquisition of
general translation rules that follow directly from the
syntactic translation. The second example illustrates the
acquisition of general translation rules when additional
sufficient conditions need to be added in order for the

syntactic translation to be semantically correct.

2 The Generic Translator

The goal of the Generic Translator is to be an easily pro-
grammable translator between different programming
languages and different hardware platforms. The latest
version of the Generic Translator can be programmed by
example, but the examples are only syntactically gener-
alized. The Learning Translator will extend this capabil-
ity by semantically generalizing examples. The first ver-
sion of the Generic Translator was developed by Philip
Newcombe as a tool for porting about two dozen pro-
grams from Basic to Fortran. This version was written
in Basic; translation rules were defined through patterns
on text strings. The effort in building the Generic Trans-
lator was more than paid back in the vast reduction of

manual effort to port just those two dozen programs. In
order to disambiguate program structure in the source
text, rules were fairly specific and consequently numer-
ous. Rules could be defined 'on the fly' during transla-
tion, so that when the translator was unable to match
program text to rules in its libraries it could notify the
user. The user would then type in a rule and the Generic
Translator would continue.

The second version of the Generic Translator was de-

veloped by Lowry. The objective was to provide a graph-

ical user interface for translating programs, provide a
friendly user interface for defining translation rules, and
to use abstract syntax trees as the underlying repre-
sentation. Abstract syntax trees (AST) are essentially
parsed programs in which the syntactic structure of the
program is explicitly represented in a tree. ASTs pro-
vide a higher-level and syntactically unambiguous rep-
resentation for program structure, so rules can be more
general. This second version was written in Refine TM,

a knowledge-based environment for program derivation
and analysis that includes parser/printer generators, an
object-oriented knowledge base, support for translation
rules, and a programmable graphical user interface. The

graphical interface allows the user to select subtrees in
the AST representation by mousing on the source text
in a display window. Grammars for Fortran and C were
provided by Reasoning Systems, Inc. Refine compiles
these grammars into parsers and printers that translate
between the source text representation and the AST rep-
resentation (Burson, el. al., 1990).

The Generic Translator enables the user to parse
source programs, apply translation rules automatically
or interactively, and write the translated programs into
a text file. The translation rules are context-dependent
and by default are applied top down through recursive

descent. At intermediate stages of translation, the tar-
get program consists of mixed syntax from the source
language and the target language. If the set of trans-
lation rules is not complete, then the resulting target
program will contain fragments of the source language.
The user can then either finish the translation by hand
or interactively define new translation rules.

The Generic Translator has two modes for interac-

tively acquiring new translation rules. In both modes,
a user selects a code fragment in the source language,
which the system generalizes by replacing the top-
most subtrees in the AST representation with pat-
tern variables. A facility for interactive generaliza-
tion/speciMization of the source code fragment was de-
signed and partially implemented. This allows a user
the option of abstracting the subtrees at any level of the
AST hierarchy, instead of just the top level. In the first
mode for rule acquisition, the system displays the left
hand side pattern obtained by generalizing the source
code fragment, and then the user types in the right hand
side pattern using a mixture of the target language syn-
tax and Refine's pattern language syntax. This mode
requires the user to be familiar with Refine's notation.
In the second mode for rule acquisition, the user loads in
the corresponding program in the target language into
another window, and then defines the right hand side of
the translation rule by selecting and generalizing a tar-
get language code fragment. After the right hand size is
generalized, the user then indicates the correspondence
between the pattern variables in the left hand side and
right hand side. This mode is suitable for users unfamil-
iar with Refine's notation and the concepts underlying
its operation. A simple example of an actual transla-
tion rule acquired interactively in this second mode is
the following:

rule LE-EXPRESSION-8 (var A)
A = '##r PATTERN-FORTRAN-77

@U .le. @V'

A = '##r C #E
@U _< @V'

This rule converts less-than-or-equal expressions in
Fortran-77 into the corresponding expressions in C. The
first line is the declaration of the rule, whose name is de-
rived automatically from the name attribute of the root
of the left hand side. The second line is Refine's no-

tation for specifying the Fortran-77 grammar with pat-
terns. The third line is the left hand side pattern, which
in this case matches a Fortran-77 arithmetic comparator

expressionfor less-than-or-equal;_U and @V are pat-
tern variables. The fourth line is Refine's notation for

specifying an expression in the C grammar. The fifth
line is the corresponding right hand side in the C pattern
language. After acquiring a rule, the Generic Translator
compiles it and adds it to a library so it may be applied
in subsequent translations.

3 The Learning Translator

Although the Generic Translator can interactively learn
syntactic translation rules, it does not provide any assis-
tance with the semantics of translation. In this section

we describe the design of an extension to the Generic

Translator, the Learning Translator, which acquires gen-
eral translation rules that are semantically valid with
the same user interface as the Generic Translator. The

Learning Translator (LTran) replaces the Generic Trans-
lator's syntactic generalization method with a more pow-
erful semantic generalization method.

The method which enables LTran to generalize from
the analysis of just one example is known as explanation-
based generalization, or EBC. EBt_'s ability to generalize
from one example is based on its ability to generalize a
proof that the example is valid. It generalizes the proof
for an example by retaining only the features of the ex-
ample needed for the proof to hold. The other features
of the example are dropped, since they are incidental to
the proof. EBG can be cast as a variant on resolution
theorem-proving for horn clause logic. This variant can
be implemented as a modification of the PROLOG inter-
preter, called PROLOG-EBG (Kedar-Cabelli & McCarty,
1987). PROLOG-EBG first constructs a proof for the ex-
ample. It then constructs a generalized proof, mirroring
the specific proof, yet retaining only variable bindings
needed for the proof, and none that were introduced by
the example alone.

The Learning Translator uses the following method for
acquiring new translation rules:

1. Syntactic Translation: As in the Generic Trans-
lator, the user indicates correspondences from a
source code fragment to a target code fragment.
From these correspondences, syntactic translation
rules are derived as described in the previous sec-
tion.

2. Operational Semantics: Theories for the opera-
tional semantics of these code fragments are derived
by instantiating generic axioms for the operations in
the code fragments. These generic axioms are lan-
guage specific, and are defined by an expert.

3. Verification: LTran attempts to verify that the
syntactic translation is semantically valid, i.e. that
the translation rules define a theory interpretation
from the theory for the source code fragment to the
theory for the target code fragment.

4. Sufficient Condition Generation: If LTran can-

not semantically verify the syntactic translation as
is, it derives sufficient conditions for the theory in-
terpretation to hold.

Theory of

Source Fragment

Os 2a

Source Code

Fragment

Theory of

Target Fragment

3

2b Or

1

IV Target Code
Fragment

Figure 1: Commutative Diagram for Learning Translator

5. Generalization: Using EBG, the proofs and the
sufficient conditions are generalized into associated
general preconditions for applying the syntactic
translation rules.

Figure 1, labeled with the first 3 steps, is the com-
mutative diagram which is the basis for this method.
This diagram can be summarized by the slogan 'The
meaning of the translation implies the translation of the
meaning 'x .

LTran verifies that the syntactic translation ¢ is se-
mantically valid by proving that it defines a theory in-
terpretation from the source to target theories. A theory
interpretation consists of a source theory, a target the-
ory, and a map ¢ from the syntax of the source theory to
the syntax of the target theory. A theory interpretation
is valid precisely when each of the axioms of the source
theory, translated under ¢, are derivable from the target
theory. Theory interpretations can be used for refining
specifications to implemented code (Blaine & Goldberg,
1991); LTran essentially treats the source as a specifica-
tion and the target as the code.

LTran derives the map ¢ from the syntactic translation
xb defined by the user, the map Os from the source code
language to the language of the source theory, and the
map OT from the target code language to the language
of the target theory. If SL is the source language, then
map ¢ is defined as follows:

¢(Os(SL)) = OT(¢(SL))

LTran derives the theory for the source code fragment
(call it FC) by instantiating generic axioms associated
with the map Os. Similarly, LTran derives the theory for
the translated source code fragment, ¢(FC), by instanti-
ating generic axioms associated with the map Or. LTran
verifies the theory interpretation by translating, using ¢,
each axiom in the source theory into the language of the

1Richard J1]llig, personal communication.

target theory and proving that each translated axiom is
derivable from the target theory, Thus the axioms de-
rived by assigning an operational semantics to the source
code fragment (step 2a) and then translating to the lan-
guage of the target code (step 3) must be derivable from
the axioms derived by first translating the source code
into the target code language (step 1) and then assign-
ing operational semantics to the target code (step 2b).
Thus the following relationship must hold, where FC is
the original source code fragment:

OT(C(FC)) _-¢(Os(rC))

A proof of this relationship for a particular code frag-
ment FC is generalized using EBG (step 5) to a proof of
this relationship for the syntactic generalization defined
by the Generic Translator.

When the relationship above cannot be proved for a
particular code fragment, LTran takes the unresolved
clauses in a resolution refutation proof and derives suf-
ficient conditions (SC) for the proof to succeed (step 4):

sc ^ Or(¢(FC)) _ ¢(Os(FC))

These sufficient conditions are likewise generalized by
EBG (step 5).

In our approach, axioms that definethe operational

semantics of a programming language are defined by ex-
perts. These axioms do not have to be complete; LTran
will do its verifications and generalization with whatever
axioms are provided. (This flexibility to deal with par-
tial theories is crucial to the success of this approach,
since automatically proving implementation correctness
is a difficult problem.)

In the examples which follow, the axioms that de-
fine Fortran array operations and C array operations are
slightly different instantiations of the following abstract
data type (ADT) for single dimensional arrays. The first
part of this ADT definition is a declaration of the types of
objects and the operations on these objects. The types of
objects are arrays, indices into arrays, and values stored
in arrays. The indices range over the integers. The array
operations are: array declaration (which defines upper
and lower bounds), 'get' and 'put' operations to retrieve
and insert values from an array, and auxiliary operations
to retrieve the lower and upper bounds of an array. In
the examples which follow we are not concerned with
the types of values stored in the arrays; a more complete
ADT for arrays would include the types of values as a

parameter to the theory. The second part of this ADT
definition are the axioms, which include error conditions
when array upper bounds and lower bounds are violated.

Declare ARRAY

Types : array, index, value
Operations : get, put, declare, Ib, ub

get : array x index ---*value
put: array x index x value --.* array
declare: array x index x index ---* array
Ib : array--- index
ub : array---, index

Axioms :

ib(deelare(A, x, y)) = z

ub(declare(A, x, y)) = y
e < Ib(A) _ put(A, e, x) = error
e > ub(A) _ put(A, e, x) = error

* e < lb(A) _ get(A,e) = error
e > ub(A) ::¢, get(A, e) = error
e > ib(A) Ae < ub(A) Ae = k

get(put(A,k,x),e) = x
e > lb(A) ^ e < ub(A) ^ e # k

get(put(A, k, x), e) = get(A, e)

The starred axiom will be the focus in the following
examples. This axiom denotes an 'out of bounds' error
condition that arises when an array access is attempted
with an index that is less than the lower bound of the

array. The application of LTran's verification and gener-
alization method to this axiom is representative of appli-
cation to other axioms. In the following examples, the se-
mantics for operations on data types is specified through
a map 0, which maps operations in the programming lan-
guage onto operations in ADTs. This map is defined by
an expert for each language; the maintenance program-
mer using LTran does not need to know about the details
of this map nor about the details of the underlying ADTs.
Below we define these maps for Fortran (0r) and C (0c)
array operations on single-dimensional arrays. Note that
the default lower bound for Fortran arrays is 1, while for
C the default lower bound is 0. Thus array declarations
without a lower bound specification will result in differ-
ent lower bounds in the two languages. Also, the upper
bound of a Fortran array is the size of the array, while
for C the upper bound is one less than the size of the
array.

Map for Fortran, with partially evaluated axioms for
Fortran array access:

OF(Real A(M)) = declareF(A, 1, M)
O_.(A(e)) = getF(A, OF(e))

Partially evaluated axioms:

Or(e) < 1 _ getr(A, Or(e)) = error
Or(e) > M _ getr(A, Or(e)) = error
OF(e) > 1 h Or(e) < M ^ Or(e) = k

getr(putr(A, k, z), OF(e)) = x
Be(e) >__1 A OF(e) <_ M A OF(e) # k

= getr(putF(A, k, x), at(e)) = getr(A, Or(e))

Map for C, with partially evaluated axioms for C array
access:

Oc(Float A[M]) = deelarec(A, O, M - 1)
Oc(A[e]) = getc(A, 0c(e))

Partially evaluated axioms:

Oc(e) < 0 =_ getc(A,Oc(e)) = error
Oc(e) > M - 1 = getc(A, Oc(e)) = error
Oc(e) > O ^ Oc(e) <_ M- 1 ^ Oc(e) = k

= getc(putc(A, k,x),Oc(e)) = _:

Oc(e) >_ 0 A Oc(e) < M - 1 ^ Oc(e) # k
=_ getc(putc(A, k, x), Oc(e)) = getc(A, Oc(e))

Translation 1

i

0

t

r

a C
n

A
A r
r r

r a

a y
Y

Translation 2

F P"

O

r

t c

I"

a A

n r

r

A a
r Y
r

a

Y.2...-.----_

Discrepency/I

in behavior

Figure 2: Two Translations of Fortran to C Arrays

Fortran Code Corresponding
C Code

Real FA(N) Float CA[N];

FA(i) CA[j-l]

x=FA(i)*.., x=CA[j-I]*...

Figure 3: Translation 1

In the next sections we elaborate the steps of LTran's
method through two detailed examples of different ways
of translating Fortran arrays into C arrays. We consider
two possible translations: In the first, the Fortran array
indices are decremented by 1 in the C implementation.
Because the default lower bound for C arrays is 1 less
than the default lower bound for Fortran arrays, this is
a correct implementation. In the second translation, the
array indices are identical between the Fortran and C
arrays. This translation usually results in clearer and
more readable C code, however it introduces a subtle
difference in behavior: when an array index of 0 is used

for a Fortran array the result is an 'array out of bounds'
error, while for the corresponding C array the result is
not an error (the 0th entry of the C array will be ac-
cessed). These two translations are illustrated in Figure
2.

In the first translation, the system will verify that the
correspondence defines a correct implementation, in the
second case the system will derive a sufficient condition,
namely that the array index not be 0, for the implemen-
tation to be correct.

These two translations can coexist, as long as they are
not applied to the same arrays. Since the ADT axioms
for the array operations 'declare', 'get', and 'put' are in-
terdependent, the translation of the operations on each
separate Fortran array must be consistent. One advan-
tage of our ADT approach to axiomatizing the semantics
of operations in a programming language is that it makes
these interdependencies explicit.

Some of the operations in the source theory are auxil-
iary: they do not explicitly correspond to any operation
in the source programming language. In the following
array examples, the lower bound and upper bound oper-
ations are auxiliary: they help to define the semantics of
the main array operations, but are not themselves part of
the syntactic translation. These auxiliary operations are

evaluated before translation in the verification proofs for
the theory interpretation. In the generalizations of these
proofs, terms headed by these auxiliary operations are
essentially treated as constants. Further elaboration of
the treatment of auxiliary operations with theory inter-
pretations can be found in (Goguen & Meseguer, 1982)
and (Lowry, 1990).

4 Translation 1: Decrement indices

from Fortran to C Arrays

In this first translation, the user would like the index
of the C array to be one less than the corresponding
index for the Fortran array; in effect the whole array is
shifted down by one. As long as the translation is consis-
tent with respect to decrementing the array index across
the 'declare', 'get', and 'put' operations, then the oper-
ational semantics of the Fortran code will be correctly
implemented by the translation into C code. The user
specifies this translation by giving examples of Fortran
and C code, and the correspondences between them, as
shown in Figure 3.

4.1 Step 1: Syntactic Translation

These examples are syntactically generalized using the
method implemented in the Generic Translator to the
following syntactic translation ¢1 from Fortran to C.
¢, is actually defined on the underlying abstract syntax
trees, but we define it here on text strings for presenta-
tion purposes:

¢,(Real A(N))= Float ,kI(A)[N]

¢l(A(e)) = ¢l(A)[¢l(e)- 1]

These translations and OF, 8c are used to derive the

map ¢1:

¢l(declareF(A, 1, N)) = declarec(¢i(A), O, g - 1)
dp, (9etr(A , e)) = getc(d_i(A), ¢1(e) - 1)

[

4.2 Step 2: Operational Semantics

Next, the operational semantics for these code fragments
are derived through 6F and 8c. The axioms for the
Fortran array access operation, getF, are instantiated
for this particular source code as follows:

i < 1 _ 9etF(FA, i) = error
i > N _ getr(FA,i) = error
i> 1Ai<NAi=k

getr(putr(FA, k, x), i) = z
i>lAi<NAi#k

getr(putF(FA, k, x), i) = getF(FA, i)

For the corresponding C code, the axioms for C array
access getc, are instantiated as follows:

j - 1 < 0 =_ getc(CA,j - 1) = error
j - 1 > N - 1 _ getc(CA,j - 1) = error
j-I>_OAj--I<N-1Aj-I=k

::_ getc(putc(CA, k,x),j- 1)= x
j-I>OAj-I<N-1Aj-I#k_

getc(putc(CA, k, x), j - 1) = getc(CA,j - 1)

4.3 Step 3: Verification

LTran first translates all the Fortran axioms to C using
the map _bl. LTran then attempts to prove that these
translated Fortran axioms are derivable from the C the-
ory. We focus on the lower bound axiom for the Fortran

getF operation. We illustrate the proof as it would be
performed using a PROLOG resolution refutation theorem
prover.

The instantiated Fortran axiom for accessing an index
less than the lower bound is:

i< l _ getF(FA, i) = error

Given map ¢1, this Fortran axiom is translated to the

language for the theory of the C operations (this is part
of Ct (Or(FC))).

el(i) < i :_ getc(ebl(FA),¢t(i)- 1) = error

After the map ¢1 is recursively evaluated:

j < 1 _ getc(CA,j - 1) = error

The next step attempts to prove that the trans-
lated Fortran axiom is derivablefrom the C axioms,

which include a similarout of bounds axiom (part of
Oc(¢I(FC))).

j - 1 < 0 _ getc(CA,j - 1) = error

LTran needs to establish Oc(¢I(FC)) _" ¢I(OF(FC)),
i.e. for this particular Fortran axiom (where the ellipse
represents the rest of the axioms for C):

- 1 < 0 :e, getc(CA,j- 1) = error] A...A

[j < 1 =_ getc(CA,j - 1) = error]

For resolution refutation with arithmetic constraint

reasoning, the goal is negated and the empty clause is
derived in 7 steps. (We replace 'getc(CA,j-1) = error'
with 'exp' for readability):

1. [j - 1 < 0 _ exp] ^ _[j < 1 _ exp]
2. [--(j - 1) < 0 V exp] ^ -_[-_j < 1 V ezp]
3. [-_(j- i) < 0V exp] ^ [j < 1 ^ _exp]
4. ['-(/- 1) < 0Aj < 1A_expJV

[exp A j < 1 ^ -_exp]
5. [-_(j - 1) < 0 ^ j < 1 ^ -_cxp]
6. [--,j < 1 ^ j < 1 ^ -',exp]
7.0

4.4 Step 5: Generalization

The proof generalized by EBG drops any bindings intro-
duced by the specific example. The only bindings re-
tained are those used by unifications in the proof. Note
that, interestingly, the general proof cannot mirror the
specific proof exactly. In particular, in the general case
the last step of the proof does not go through directly,
because it depends on the value of the decrement be-
ing precisely the difference between the Fortran lower
bound and the C lower bound. When the index is be-

tween the lower bounds of the two languages, one lan-
guage would give an 'out of bounds' error, the other
will not, and therefore the operational semantics of the
arrays will differ. Since this would not be a valid imple-
mentation, this needs to be avoided. Thus even though
in the specific case no sufficient conditions were needed,
the general proof requires derived sufficient conditions,
namely that only when the index into the array is less
than the lower bound for the C array or greater than or
equal to the lower bound for the Fortran array will the
behavior of the two arrays be the same. Similar restric-
tions are derived by generalizing the proofs for the other
axioms, which will result in sufficient conditions for the
other casesof bounds discrepenciesbetween Fortran and
this C translation.These derived sufficientconditions

can then eitherbe used as a preconditionfor applying
the translationor be used to insertconditionalbranches

into the targetcode that cover those cases where the

operationalsemantics would otherwisediffer.

The generalFortranaxiom is:

e < IbF(A) ::_ getF(A,e) = error

Given map _bl, this general axiom is translated as fol-

lows. Note that for this general case ¢1(e), lbf(A), and
¢1(A) are not evaluated:

¢1(e) < lbr(A) =_ getc(¢l(A), ¢1(e) - 1) = error

The general C axioms include the similar out of
bounds axiom.

¢,(e)- 1 < lbc(¢l(A))
gac(¢_(A),6,(e) - 1) = error

The general proof attemps to mirror the specific proof,
yet differs at the last step. LTran needs to show

8c(¢1(FC)) _ ¢l(Sr(FC)), which includes the follow-
ing (where the ellipse represents the rest of the axioms
for C):

[61(e) - 1 < lbc(¢l(A))
getc(¢l(A),¢l(e)- 1)=error] A...A

F

[¢1(e) < lbr(A) _ getc(¢l(A),¢l(e)- 1) = error]

Corresponding
Fortran Code C Code

Real FA(N) Float CA[N+1];

For resolution refutation, the goal is negated and an
attempt is made to derive the empty clause in 6 steps.
(We replace 'getc(¢l(A),¢l(e)- 1) = error' with 'exp'
for readability).

1. [¢1(e) -- 1 < lbc(Cl(A)) _ ezp]
A_[¢l(e) < ibr(A) _ ezp]

2. [_ (¢1(e)- 1 < ibc(¢l(A)))Vezp]
A--[-- (¢1(e) < IbF(A))V ezp]

3. [-- (¢1(e) - 1 < lbc(¢l(A))) Vezp]
^[(¢1(e) < tbr(A)) ^ -_e_p]

4. ['-(¢1(e) - 1 < lbc(¢l(A)))A (¢1(e) < lbr(A))
A'-ezp] V [ezp ^ (¢1(e) < ibr(A)) A -_exp]

5. [-- (¢1(e) - 1 < lbc(¢l(A))) ^ (41(e) < Ibr(A))
A_ezp]

This will resolve to the empty clause when any subset
of its conjuncts are false. Therefore, a derived sufficient
condition for this proof to succeed is:

6. [(¢I(e) - 1 < lbc(Ol(A))) V (¢1(e) > lbr(A))]

To reiterate, this states that sufficient conditions for
this translation of Fortran to C arrays to be semantically
valid (i.e. for both Fortran and C arrays to exhibit the
same behavior), the decremented index has to be less
than the lower bound of the C array (where both lan-
guages would give an 'out of bounds' error) or the origi-
nal index is greater than or equal to the lower bound of
the Fortran array (where neither language will give an
'out of bounds' error). Reformulated as an implication,
if the original index is less than the lower bound of the
Fortran array, then the decremented index has to be less
than the lower bound of the C array.

5 Translation 2: Identical indices for

Fortran and C Arrays

In the second translation the user would like the index of

the C array to range over the same values as the Fortran
array. This translation introduces a subtle difference in
behavior: when an array index of 0 is used in a Fortran
array access, the result is an 'out of bounds' error, while
for the corresponding C array the result is not an error.
Thus for this to be a semantically valid translation, the

array index may not be 0. The user specifies this trans-
lation by giving examples of Fortran and C code, and
the correspondences between them, as shown in Figure
4.

FA(i) CA[j]

x=FA(i)*.., x=CA[j]*...

Figure 4: Translation 2

5.1 Step h Syntactic Translation

These examples are syntactically generalized using the
method implemented in the Generic Translator to the
following syntactic map, ¢2, which is actually defined
on the underlying abstract syntax trees but which we
define here on text strings for presentation purposes:

C2(Real A(N)) = Float _2(A)[N + 1]
¢2(A(e)) = ¢2(A)[¢2(e)]

These translations and 8F,8c are used to derive the

map ¢2 :

$2(declare F(A, 1, g)) = declarec(¢2(A), O, N)
¢2(getr(A, e)) = getc(O2(A), ¢2(e))

5.2 Step 2: Operational Semantics

Next, the operational semantics for the behavior of these
code fragments are derived through 8F and 0c

The axioms for the Fortran array access operation,

getF, are instantiated for this particular source code
fragment as follows:

i < 1 =_ getr(FA, i) = error
i > N ::*. getF(FA, i) = error
i> lAi<NAi=k

getr(putF(FA, k, x), i) = z
i>lAi<NAi#k

getv(putr(FA, k, z), i) = getF(FA, i)

For the corresponding target code fragment, the ax-
ioms for C array access are instantiated as follows:

j < 0 _ getc(CA,j) = error
j > N _ getc(CA,j) = error
j>_OAj<gAj=k

getc(putc(CA, k, z),j) = x
j>_OAj<gAj#k

::_ getc(putc(CA, k, z), j) = getc(CA, j)

5.3 Step 3,4: Verification and Sufficient
Condition Generation

L_ran attempts to verify that the syntactic translation
is semantically valid by proving that there is a theory
interpretation from the source to target. In particular,
it attempts to demonstrate that translating the index
identically between Fortran and C results in a correct
implementation. LTran is unable to complete the proof.
Instead it returns sufficient conditions required to com-
plete this proof, namely that the index not be zero.

The instantiated Fortran axiom for accessing an index
less than the lower bound is:

i < 1 _ ge_p(FA, i) = error

Given map ¢2, this Fortran axiom is translated to the
language for the theory of the C operations (this is part
of ¢2(OF(FC))):

¢2(0 < 1 ==_getc(¢_(FA), ¢_(i)) = error

After the map ¢_ is recursively evaluated:

j < 1 _ getc(CA, j) = error

The next step attempts to prove that the trans-
lated Fortran axiom is derivable from the C axioms,
which include a similar out of bounds axiom (part of
Oc(¢l(FC))).

j < 0 _ getc(OA,j) = error

LTran attempts to establish
0c(_b2(FC)) I- ¢2(SF(FC)), i.e. for this particular For-
tran axiom (where the ellipse represents the rest of the
axioms for C):

< 0 =¢, getc(CA,j) = error] A...A

< 1 _ getc(CA,j) = error]

For resolution refutation with arithmetic constraint

reasoning, the goal is negated, and an attempt is made
to derive the empty clause. (We replace 'getc(CA, j) =
error' with 'exp' for readability):

1. < 0 e p] ^ -[j < 1 exp]
2. [_j < 0 V exp] A ",[',j < 1 V ezp]
3 < o v e pl ^ b"< 1^ -'e Pl
4. [',j < 0 ^ j < 1 ^ "-,ezp] V [exp A j < 1 ^ -,ezp]
5. ['-,j < 0 ^ j < 1 ^ ",ezp]
6. [j = 0 ^ - ezp]

This will resolve to the empty clause when any subset
of its conjuncts are false. Therefore, a derived sufficient
condition for this proof to succeed is:

[j # o]

This states that in order for this translation to be se-

matically valid, the index of the C array cannot be 0.

5.4 Step 5: Generalization

This proof can be generalized by dropping any bindings
introduced by the specific example not needed for the
proof. LTran generalizes this proof to any translation
from Fortran to C in which the array indices have the
same value. The general condition under which such
a translation is semantically valid is if the index into
the translated Fortran array is never between the lower
bounds of the Fortran and C arrays. In the case when the
lower bounds of Fortran and C default to 1 and 0, respec-
tively, the array index should not be 0. When the index
is between the lower bounds of the two languages, one
language would give an 'out of bounds' error, the other
will not, and therefore the operational semantics of the
arrays will differ. Since this would not be a valid imple-
mentation, this needs to be avoided. Thus the general
proof requires derived sufficient conditions, namely that
the index into the array be less than the lower bound for
the C array or greater than or equal to the lower bound

for the Fortran array. Similar restrictions are derived
by generalizing the proofs for the other axioms. These
derived sufficient conditions can then either be used as

a precondition for applying the translation or be used
to insert conditional branches into the target code that
cover those cases where the operational semantics would
otherwise differ.

The general Fortran axiom is:

e < lbF(A) _ getF(A,e) = error

Given map ¢2, this general axiom is translated:

¢2(e) < lbr(A)
=:>getc(¢2(A), ¢(e)) = error

The general C axioms include the a similar out of
bounds axiom.

¢_(e) < lbc(¢2(A))
=_ gefc(¢2(A), ¢2(e)) = error

The general proof mirrors the specific proof. LTran
needs to show 0c(¢1(FC)) F" ¢I(OF(FC)), which in-
cludes the following (where the ellipse represents the rest
of the axioms for C):

[¢2(e) < Ibc(¢2(A)) =4>
getc(¢_(A), ¢_(e)) = error] ^... ^

[¢_(e) < lbr(A) =>
getc(¢2(A), ¢2(e)) = error]

For resolution refutation, the goal is negated and an
attempt is made to derive the empty clause. (We replace
'getc(¢2(A), ¢2(e)) -" error' with 'exp' for readability):

1. [¢_(e) < Ibc(¢2(A)) _ ezp]A
--[¢2(e) < lbr(A) =_ ezp]

2. ["1 (¢_(e) < lbc(¢_(A))) V exp]^
-[- (¢2(e) < IbF(A)) V ezp]

3. [-_ (¢2(e) < lbc(¢2(A))) Y ezPl^

[(¢2(e) < lbr(A)) ^ -_exp]
4. [-- (¢2(e) < lbc(C_(A))) ^

(¢2(e) < lbr(A)) ^ --,exp]V
[exv A (¢2(e) < lbF(A)) ^ -,ezp]

5. [-_ (¢u(e) < Ibc(¢2(A))) A (¢2(e) < lbF(A)) A
"_exp]

This will resolve to the empty clause when any subset
of its conjuncts are false. Therefore, a derived sufficient
condition for this proof to succeed is:

6. [(¢2(e) < lbc(¢2(A))) V (02(e) _> IbF(A))]

This states that the translation is valid when the C
index is lower than the lower bound of the C array or
greater than or equal to the lower bound of the Fortran
array.

6 Discussion

A preliminary version of LTran is underway, building
on top of PROLOG-EBG. In this section we discuss user
interface and theorem proving issues.

We anticipate three different classes of users for LTran.

The first class would define the programming language
theories, the second class would interactively define
translation rules between languages, and the third class
would use these translation rules to port programs. This
paper has primarily addressed the interactive acquisi-
tion of translation rules from examples. LTran reduces
the expertise needed for this second class of users by
employing knowledge about programming language the-
ories entered by the first class of users. Similarly, by
storing semantic conditions needed for the valid appli-
cation of translation rules, LTran reduces the expertise
needed by the third class. We believe that LTran will

make maintenance programmers substantially more pro-
ductive. However, the primary benefit will be to im-
prove the quality of ported programs by ensuring that
translation rules are correct, while providing the freedom
to meet non-functional requirements. This will enhance
confidence in ported programs while at the same time
reducing testing costs.

Proving implementation correctness is a major re-
search issue with many practical applications. Although
in the worst case proving implementation correctness is
undecidable, there are many aspects which are amenable
to current automatic theorem proving techniques. In our
approach LTran can be used at different levels of ab-
straction with partial, decidable theories of the behavior
of programming language constructs. There are many
levels of abstraction for proving implementation correct-
ness, depending on the granularity of the behavior which
is being implemented. In some cases only high level in-
variants are critical. In other cases low level details such

as the precision of arithmetic and the use of memory are
important aspects of the behavior. The examples in this
paper are based on high level invariants of abstract data
types. As is shown by our examples, even this partial
approach to deriving a set of axioms for the behavior
of code fragments can provide considerable assistance to

the maintenance programmer.

Acknowledgements

Thanks to Lee Blaine, Richard Jullig, Philip Laird,
David Zimmerman, and the referees for reviewing this
paper and providing helpful comments.

References

Blaine, L. and Goldberg, A. 1991. DTRE: A Semi-
Automatic Transformation System. Proceedings
of IFIP TC2 Workshop on Constructing Programs
from Specifications, Asilomar, Pacific Grove, CA.

Burson, S., Kotik, G.B., and Markosian, L.Z. 1990. A

Program Transformation Approach to Automating
Software Re-engineering. Proceedings of the Four-
teenth International Computer Software and Appli-
cations Conference, Washington, D.C.

Goguen, J. and Meseguer, J. 1982. Universal Realiza-
tion, Persistent Interconnection and Implementa-
tion of Abstract Modules. Proceedings of ICALP,
Springer Verlag LNCS No. 140.

Kedar-Cabelli, S. T. and McCarty, L. T. 1987.
Explanation-Based Generalization as Resolution
Theorem Proving. Proceedings of the Fourth Inter-
nation Machine Learning Workshop, Irvine, CA.

Lowry, Michael R. 1990. Abstracting Domains with Hid-
den State. Working Notes of the AGAA-90 Work-
shop, Boston, MA.

Mitchell, T. M., Keller, R. M. and Kedar-Cabelli, S. T.
1986. Explanation-Based Generalization: A Unify-
ing View. Machine Learning, 1(1), 47-80.

Mitchell, T., Mahadevan, S. and Steinberg, L. 1985.
LEAP: A Learning Apprentice for VSLI Design.
Proceedings of the N=nth IJCA1, Los Angeles, CA.

Smith, R. G., Winston, H. A., Mitchell, T. M., and
Buchanan, B. G. 1985. Representation and Uses of
Explicit Justifications for Knowledge Base Refine-
ment. Proceedings of the Ninth IJCAI, Los Angeles,
CA.

r

